第
29
卷
摇
第
4
期
陈晓杰
:
股指期货高频动态估值研究
[
7
]
Mackinlay A C
,
Pastor L. Asset pricing models
:
implications for expected returns and portfolio selection
[
J
]
.
Review of Financial studies
,
2000
,
13
(
4
):
883 - 916.
[
8
]
Madhavan A. Market microstructure
:
A survey
[
J
]
.
Journal of Financial Markets
,
2000
,
3
(
3
):
205 - 258.
[
9
]
Martens M. Measuring and forecasting S&P 500 in鄄
dex鄄futures volatility using high鄄frequency data
[
J
]
. Journal
of Futures Markets
,
2002
,
22
(
6
):
497 - 518.
[
10
]
Ramaswamy K
,
Sundaresan S M. The valuation of
options on futures contracts
[
J
]
. Journal of Finance
,
1985
(
40
):
1319 - 1340.
[
11
]
封思贤
,
张兵
,
李心丹
,
等
.
从中国股指期货境
外的联动看我国股市定价权
[
J
]
.
金融研究
,
2010
(
4
):
101 - 114.
[
12
]
高见
,
杨丹
.
指数化投资中复制方法的比较分析
[
J
]
.
金融研究
,
2006
(
8
):
31 - 40.
[
13
]
洪永淼
.
计量经济学的地位
,
作用和局限
[
J
]
.
经济研究
,
2007
(
5
)
.
[
14
]
李胜歌
,
张世英
.
金融高频数据的最优抽样频率
研究
[
J
]
.
管理学报
,
2008
,
5
(
6
):
801 - 806.
[
15
]
施东晖
,
孙培源
.
市场微观结构
———
理论与中
国经验
[
M
]
.
上海
:
上海三联书店
,
2005.
[
16
]
魏平
,
梁晨
.
股指期货冲击成本测算与实证研究
[
J
]
.
数理统计与管理
,
2013
,
32
(
4
):
727 - 739.
[
17
]
叶五一
,
缪柏其
.
已实现波动与日内价差条件下
的
CVaR
估计
[
J
]
.
管理科学学报
,
2012
(
8
):
60 - 71.
[
18
]
郑振龙
.
金融资产价格的信息含量
:
金融研究的
新视角
[
J
]
.
经济学家
,
2009
(
11
):
69 - 78.
[
19
]
曾廷敏
,
林详友
,
王勇
.
沪深
300
股脂期货动态
价量关系研究
[
J
]
.
西部论坛
,
2013
(
6
):
62 - 68.
[
20
]
陈红
,
周奋
,
张磊
.
我国股指期货市场与股票现
货市场的价格关系
———
来自中国资本市场的经验证据
[
J
]
.
中南财经政法大学学报
,
2012
(
6
):
48 - 53.
[
21
]
顾京
,
叶德磊
.
基于高频数据的股指期货价格发
现功能的动态研究
[
J
]
.
河北经贸大学学报
,
2013
(
3
):
48 - 53.
[
22
]
马小南
.
我国股指期货对股票市场波动性的影
响研究
[
J
]
.
求索
,
2013
(
5
):
35 - 37.
A Study of Dynamic Valuation of Stock Index Futures
:
CHI300 Index Futures as an Example
CHEN Xiaojie
(
Fujian Provincial Development and Reform Commission
,
Fuzhou
,
Fujian 350003
,
China
)
Abstract
: Compared to the traditional Cost鄄of鄄Carry valuation model, we propose the dynamic valuation model considering
the high鄄frequency dynamic information in real markets, which is more helpful for investors to make more precise predictions in e鄄
lusive markets. Through applying 5鄄min high鄄frequency dynamic valuation model empirical analysis to trading data of continuous
contracts of CSI 300 stock index futures, we find accuracy of dynamic valuation model is expected to reach 99. 92% on average,
which is 14. 2 times of the traditional Cost鄄of鄄Carry valuation model. Moreover, the error fluctuation of dynamic valuation is ex鄄
pected to be 8. 93% of the traditional Cost鄄of鄄Carry valuation.
Key Words
: stochastic partial differential equation; high鄄frequency market information; accurate prediction
(
本文责编
摇
王沈南
)
·58·