Page 106 - 北京工商大学学报社会科学版2018年第6期
P. 106
第 33 卷摇 第 6 期 丁摇 慧, 吴康成: 中国银行业系统性风险溢出效应测度
银行体系危机防范的能力;另一方面也可以有效 [6] 杨有振,王书华. 中国上市商业银行系统性风险
溢出效应分析———基于 CoVaR 技术的分位数估计[J]. 山
降低监管成本。
第三,要高度关注商业银行间业务往来引致 西财经大学学报,2013(7):24 - 33.
[7] 欧阳资生,莫廷程. 基于广义 CoVaR 模型的系统
的风险溢出,加强对商业银行之间的业务往来
重要性银行的风险溢出效应研究[ J]. 统计研究,2017
的监测。 由于各商业银行之间风险溢出效应存
(9):36 - 43.
在明显差异,因此在风险管控过程中需注意区 [8] GIRARDI G,ERG譈N A T. Systemic risk measure鄄
别对待。 ment:multivariate GARCH estimation of CoVaR[J]. Journal
of Banking & Finance,2013,37(8):3169 - 3180.
注摇 释: [9] KARIMALIS E N,NOMIKOS N K. Measuring sys鄄
淤限于篇幅,最优 ARMA鄄GARCH 模型的遴选过程不 temic risk in the european banking sector:a copula CoVaR
在正文中展示;若需要,可向作者索取。 approach[J]. European Journal of Finance,2018,52(1):1 -38.
[10] HARDLE W K,WANG W,YU L. Tenet:tail鄄event
参考文献: driven network risk[ J]. Journal of Econometrics,2016,192
(2):499 - 513.
[1] ADRIAN T, BRUNNERMEIER M K. CoVaR [J].
[11] 王周伟,吕思聪,茆训诚. 基于风险溢出关联特
American Economic Review, 2016 ,106(7):1705 - 1741.
征的 CoVaR 计算方法有效性比较及应用[J]. 经济评论,
[2] MAINIK G,SCHAANNING E. On dependence con鄄
2014(4):148 - 160.
sistency of CoVaR and some other systemic risk measures
[12] 李丛文,闫世军. 我国影子银行对商业银行的
[J]. Statistics & Risk Modeling,2014,31(1):49 - 77.
风险溢出效应———基于 GARCH - 时变 Copula - CoVaR 模
[3] L魷PEZ鄄ESPINOSA G,MORENO A,RUBIA A. System鄄
型的分析[J]. 国际金融研究,2015(10):64 - 75.
ic risk and asymmetric responses in the financial industry [J].
[13] 严伟祥,张维,牛华伟. 金融风险动态相关与风
Journal of Banking & Finance,2015,58(2):471 -485.
[4] 李志辉,樊莉. 中国商业银行系统性风险溢价实 险溢出异质性研究[J]. 财贸经济,2017(10):67 - 81.
[14] 赵树然,米月,任培民,群体分析视角下商业银
证研究[J]. 当代经济科学,2011(6):13 - 20.
[5] 肖璞,刘轶,杨苏梅. 相互关联性、风险溢出与系 行对金融体系的风险溢出效应研究[J]. 统计研究,2018
(3):52 - 65.
统重要性银行识别[J]. 金融研究,2012(12):96 - 106.
The Measure of Systematic Risk Spillover Effect in China蒺s Banking Sector
DING Hui & WU Kangcheng
(School of Finance, Nanjing University of Finance & Economics, Nanjing, Jiangsu 210023, China)
Abstract: Based on the model of ARMA鄄GARCH鄄CoVaR, this paper measures one bank蒺s marginal contribution to the sys鄄
temic risk and the spillover effect among the commercial banks using daily stock returns data of 14 listed commercial banks in
China from 2008 to 2016. The empirical results show that there is spillover effect in each bank, but obvious differences exist in
marginal contribution of different banks to the systemic risk. No significant correlation is found between banking systemic risk and
its VaR. It is worth mentioning that the state鄄owned commercial banks have the highest contribution to systemic risk of banking
sector, in spite of their low VaR. The risk spillover effect also occurs among different banks but it is asymmetric, being greater of
the state鄄owned enterprises and city commercial banks to their associated banks than that of joint鄄equity commercial banks. Be鄄
sides, both domestic and international economic and financial situation has a major impact on the systemic risk spillover of
China蒺s banking industry, making it the focus of future risk prevention and control to integrate macroeconomic events into the dy鄄
namic monitoring process of bank risks.
Key Words: commercial bank; systemic risk; risk spillover effect; CoVaR model; systemic importance; macro鄄prudential
supervision
(本文责编摇 王沈南)
· 1 0 1 ·